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A B S T R A C T

Normal aging is associated with declines in sensorimotor function. Previous studies have linked age-related
behavioral declines to decreases in neural differentiation (i.e., dedifferentiation), including decreases in the
distinctiveness of neural activation patterns and in the segregation of large-scale neural networks at rest. How-
ever, no studies to date have explored the relationship between these two neural measures and whether they
explain the same aspects of behavior. To investigate these issues, we collected a battery of sensorimotor
behavioral measures in older and younger adults and estimated (a) the distinctiveness of neural representations in
sensorimotor cortex and (b) sensorimotor network segregation in the same participants. Consistent with prior
findings, sensorimotor representations were less distinct and sensorimotor resting state networks were less
segregated in older compared to younger adults. We also found that participants with the most distinct senso-
rimotor representations exhibited the most segregated sensorimotor networks. However, only sensorimotor
network segregation was associated with individual differences in sensorimotor performance, particularly in older
adults. These novel findings link network segregation to neural distinctiveness, but also suggest that network
segregation may play a larger role in maintaining sensorimotor performance with age.
1. Introduction

Aging is associated with extensive declines in sensorimotor function
including fine motor control, gait, and balance (Seidler et al., 2010).
Although these declines can reflect changes in the peripheral sensori-
motor system (Cole et al., 1999), they also likely reflect changes in the
central nervous system, such as alterations in brain structure and func-
tion (Seidler et al., 2010). A central challenge, then, is to advance our
understanding of the neural mechanisms that underlie age-related de-
clines in sensorimotor function. Doing so could lead to new interventions
to extend work productivity and facilitate a variety of daily life activities
in older adults.

Previous research has found that neural representations are less
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selective, or distinctive, in older compared with younger adults. This
phenomenon is often referred to as age-related neural dedifferentiation (Li
and Lindenberger, 1999), reflecting the fact that neural activity in
response to different stimulus categories is less differentiated in older
adults. For example, in young adults, the neural activation patterns
evoked by looking at pictures of faces are quite different from those
evoked by looking at pictures of houses. However, these activation pat-
terns are more similar (i.e., less distinct or less differentiated) in older
adults (Park et al., 2004). Furthermore, older adults who exhibit less
distinct neural representations often perform significantly worse on a
range of cognitive (Park et al., 2010) and motor tasks (Bernard and
Seidler, 2012) than older adults whose neural representations are more
distinct.
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Table 1
Mean and standard error of demographics and behavioral measures across all
participants, and just in the older and younger adult groups. GS ¼ Grip strength.

All participants Old adults Young adults

Age 53.4 � 2.8 70.4 � 0.6 22.9 � 0.6
MoCA 27.6 � 0.2 27.3 � 0.3 28.2 � 0.3
Dexterity 102.1 � 1.1 98.4 � 1.2 109 � 1.1
GS 99 � 1.4 97.2 � 1.7 102.4 � 2.5
Endurance 90.6 � 1.5 86 � 1.7 99.3 � 2

1 Factor 1 (including dominant and non-dominant dexterity) refers to fine
motor performance whereas Factor 2 (including dominant and non-dominant
grip strength and endurance) refers to gross motor performance.
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Accumulating evidence also points to age differences in the organi-
zation of functional brain networks (Damoiseaux, 2017). This type of
organization is most frequently investigated using resting-state func-
tional connectivity (Biswal et al., 1995) and more recently, using graph
theoretical analyses (Bullmore and Sporns, 2009). In graph theory, a
brain network is treated as a set of nodes (corresponding to brain regions)
with edges (corresponding to functional connections) between them.
Using this framework, one can calculate multiple measures of brain
networks. One common measure is network segregation, defined as the
scaled difference between within-network connectivity and
between-network connectivity. A number of studies have demonstrated
that older age is associated with less segregated (i.e., dedifferentiated)
networks (Damoiseaux, 2017). Further, less segregated networks predict
poorer cognitive (Chan et al., 2014) and sensorimotor (King et al., 2018)
performance.

Given that both neural distinctiveness and network segregation
decline with age and that both are associated with behavior, a natural
question is whether these two measures of neural dedifferentiation are
actually measuring the same underlying construct and whether they
predict similar aspects of behavior. One reason to suspect that they do is
that previous work has found a relationship between the brain’s func-
tional connectivity at rest and activity during task performance. For
instance, Langan and colleagues found that reduced interhemispheric
resting state connectivity in older adults was associated with greater
activity in the non-dominant hemisphere during unimanual motor per-
formance (Langan et al., 2010). Chan et al. recruited participants across
the adult life span (from ages 20–89 years), and demonstrated that
reduced differentiation between network-specific connector and
non-connector nodes measured at rest correlated with reduced differ-
entiation of connector vs. non-connector nodes during visual and se-
mantic task performance (Chan et al., 2017). These findings suggest that
network topology observed at rest may constrain functional activity of
brain areas during motor, visual and semantic task performance, and that
network segregation might be closely related to neural distinctiveness.

In this study, we investigated the relationship between neural
distinctiveness and network segregation in the sensorimotor domain, by
measuring both in the same participants. We also collected a battery of
sensorimotor behavioral measures to examine the relationship between
the neural measures and performance.

We explored three questions. First, do older adults exhibit reduced
sensorimotor distinctiveness and sensorimotor network segregation
relative to young adults? Second, are less distinct sensorimotor repre-
sentations associated with less segregated sensorimotor networks? Third,
are both neural distinctiveness and network segregation associated with
sensorimotor performance and does either explain significant behavioral
variance over and above the other?

2. Materials and methods

2.1. Participants

We collected data from 25 younger adults (age range 19–29 years; 16
females) and 46 older adults (age range 65–81 years; 28 females), as part
of the largerMichigan Neural Distinctiveness study (Gagnon et al., 2019).
Some of these participants (22 younger adults and 23 older adults) were
also included in our previous study, in which we examined sensorimotor
network segregation and its relationship with GABA levels and sensori-
motor behavior (Cassady et al., 2019). All participants were
right-handed, native English speakers. They were screened to ensure they
had no history of stroke, were not taking any medications with psycho-
tropic effects, and were free of any MRI safety contraindications. Par-
ticipants were also screened for cognitive impairments using the
Montreal Cognitive Assessment (Brenkel et al., 2017), and only those
with scores �23 were included in this study. Two younger adult partic-
ipants were excluded from further task-based fMRI analyses because of
excessive head motion in the MRI scanner (more than 3 mm or 3� in any
2

axis). An additional three older adult participants did not finish their
fMRI task-based session and therefore were excluded from this analysis.
A detailed explanation of the study was provided, and written informed
consent was obtained from all participants. The study was approved by
the Institutional Review Board of the University of Michigan.

2.2. Experimental design and statistical analysis

All participants completed two separate test sessions: an imaging
session during which we collected task-based and resting-state fMRI data
and a behavioral session during which we collected sensorimotor
behavioral data. The order of the fMRI and behavioral sessions was
counterbalanced across participants. All data was obtained within an
average period of 24 days.

To examine age differences in neural distinctiveness, network segrega-
tion and behavior between young and older adults, we performed inde-
pendent sample t-tests. To assess the relationship between distinctiveness
and segregation, we performed partial correlation analysis (controlling for
age, grey matter (GM) volume, motion, and univariate activation). To
examine the relationship between distinctiveness, segregation, and
behavior, we performed multiple regressions across all participants
(including the same covariates). For all statistical analyses, data points
greater than three standard deviations above orbelow the groupmeanwere
excluded. SPSS software was used for all statistical analyses (SPSS Inc.,
Chicago IL).

2.3. Sensorimotor assessments

We used a National Institute of Health sensorimotor test battery that
includes tests of fine motor dexterity (tested with the 9-hole pegboard
dexterity test), grip strength, and endurance (measured with a 2-min
walk endurance test). Please refer to Cassady et al. (2019) and Gagnon
et al. (2019) for details of the sensorimotor assessments. A summary of
age-group means (and standard errors) for each behavioral measure is
included in Table 1. Participants’ scores for all tests were submitted to an
exploratory factor analysis in order reduce the dimensionality of the data.
Please refer to Table 2,1 for factor analysis model coefficients across all
participants.

2.4. MRI data acquisition

Structural and functional brain images were obtained using a GE
Signa 3-T MRI scanner, located at the University of Michigan Functional
Magnetic Resonance Imaging Laboratory. A 16-rod bird cage head coil
was used for all participants, and movement was minimized by using
head cushions and Velcro straps. During each participant’s scanning
session, we acquired T1-weighted structural images, high-resolution
structural images using spoiled 3D gradient-echo acquisition (SPGR),
and T2*-weighted functional images (one resting state scan including
240 vol and one task-based scan including 180 vol). Functional images
were obtained using a single-shot gradient-echo (GRE) reverse spiral



Table 2
Model coefficients from factor analysis across all participants. GS ¼ Grip
strength.

Behavioral measure Factor 1 Factor 2

Dexterity dominant �0.04 0.63
Dexterity non-dominant �0.11 1.03
GS dominant 1.03 �0.1
GS non-dominant 0.96 �0.08
Endurance 0.52 0.35

K. Cassady et al. NeuroImage 212 (2020) 116663
pulse sequence. The field of view was 220 � 200 mm, the voxel size was
3 � 3 � 4 mm (40 axial slices), the TR (repetition time) was 2 s, and the
TE (echo time) was 30 ms. Respiratory and cardiac data were collected
for both resting state and task scans, and were subsequently controlled
for in first-level analyses.
2 Although mathematically, negative values are treated as smaller than zero,
negative correlations may actually reflect the presence of inhibitory connec-
tions. Using absolute values is another alternative, but then it is impossible to
distinguish node pairs whose time series look similar (and that are likely part of
the same network) from node pairs whose time series look dissimilar (and that
are likely part of different networks). For these reasons and others, existing
graph theoretical measures were mostly developed for networks with only
positive connections and many graph theory metrics largely ignore fMRI net-
works’ negative edges (Zhan et al., 2017).
2.5. Resting state fMRI preprocessing and analysis

Preprocessing of the resting state fMRI data was performed with the
Statistical Parametric Mapping software (SPM; www.fil.ion.ucl.ac.
uk/spm). Preprocessing steps included slice-time correction, realign-
ment, segmentation of structural images, normalization into standard
Montreal Neurological Institute (MNI) space, and spatial smoothing
using a Gaussian kernel of 8 mm full width at half-maximum. To detect
and reject head motion artifacts in the scanner, we used the Artifact
Detection Toolbox (ART; https://www.nitrc.org/projects/artifact_detec
t), which included “scrubbing” scans with excessive motion using a
threshold of .2 mm frame-wise displacement (FWD). Outliers in the
global mean signal intensity and motion were subsequently included as
nuisance covariates in the first level general linear model (GLM). There
were a total of 40 outlier volumes from 6 participants during pre-
processing for the resting state data (14 vol in the older adult group and
26 vol in the younger adult group). The difference between the age
groups was not statistically significant, t(69) ¼ 0.87, p ¼ .39. There were
a total of 74 outlier volumes from 13 participants during preprocessing
for the task data (28 vol from the older adult group and 46 vol from the
younger adult group). The difference between the age groups was not
statistically significant, t(69) ¼ 1, p ¼ .33. Including both this measure of
motion and the motion measure from the resting state data in the
regression analyses did not alter the results.

We performed additional denoising on the resting state data with the
CONN toolbox. The data were first filtered using a temporal band-pass
filter of 0.008–0.09 Hz to examine the frequency band of interest and
to exclude higher frequency sources of noise. For additional noise
reduction, the anatomical component-based noise correction method,
aCompCor (Behzadi et al., 2007), was used. This method models the
influence of noise as a voxel-specific linear combination of multiple
empirically estimated noise sources by acquiring principal components
from noise ROIs and subsequently including them as nuisance parameters
in the first-level GLM. In particular, each participant’s structural image
was segmented into white matter (WM), GM, and cerebrospinal fluid
(CSF) masks. Next, the WM and CSF masks were eroded by one voxel in
order to minimize partial voluming effects. Finally, these erodedWM and
CF masks were used as nuisance ROIs. The signals from all ROIs were
extracted from the unsmoothed functional images to avoid potential
“spillage” of the BOLD signal from nearby regions. Residual head motion
parameters (three rotations, three translations, and six parameters rep-
resenting their first-order temporal derivatives) and signals fromWMand
CSF were regressed out during the calculation of functional connectivity
maps. To test whether there were age differences in the percentage of
variance removed from preprocessing of the resting state data, we
calculated the variance in the signal before and after preprocessing for all
participants. We found that, on average, 81% of the variance was
removed for older adult and 82% was removed for younger adults. There
was no significant age group difference in this relationship, t(69)¼ 1.1, p
3

¼ .27.
We performed an ROI-to-ROI first-level functional connectivity

analysis using the CONN toolbox (Whitfield-Gabrieli and
Nieto-Castanon, 2012). To do so, we first created (5 mm radius spheres;
each sphere has a volume of about 524mm3) ROIs usingMNI coordinates
published in Power et al. (2011). We used all coordinates from this
previous study except for those that belonged to “subcortical” and “un-
defined” networks, leaving us with 214 ROIs. Each ROI was labeled ac-
cording to this published functional network map, which included ten
networks (Hand sensorimotor, Visual, Mouth sensorimotor, Auditory,
Default, Frontal-parietal control, Ventral attention, Cingulo-opercular
control, Dorsal attention, and Salience networks). For each participant,
the resting state time series within each ROI was then extracted from the
unsmoothed functional images and the mean time series was computed.
Next, the cross-correlation between each ROI’s time course with every
other ROI’s time course was calculated, producing a 214 � 214 corre-
lation matrix for each participant. Fisher’s r-to-z transformation was then
used to convert correlation coefficients (i.e., graph edges) into z-values.
Last, in keeping with previous functional connectivity studies,
negatively-weighted edges were set to zero in each participant’s corre-
lation matrix to avoid potential misinterpretation of negative edge
weights.2

Network segregation was calculated to examine within-network
correlations in relation to between-network correlations. As introduced
in Chan et al. (2014), network segregation was defined as the difference
in mean within-network connectivity and mean between-network con-
nectivity as a proportion of mean within-network connectivity:

Network segregation¼Zw � Zb

Zw

where Zw is the mean Fisher z-transformed correlation between ROIs
within the same network and Zb is the mean Fisher z-transformed cor-
relation between ROIs of one network with all ROIs in other networks
(Chan et al., 2014).

2.6. Task-based fMRI design, preprocessing and analysis

During the task-based fMRI session, participants performed one (6-
min) run of a sensorimotor task while blood oxygenation-level dependent
(BOLD) data were collected. For this task, participants were instructed to
tap their left thumb (six blocks per run), right thumb (six blocks per run),
or to fixate at a crosshair stimulus in the center of the visual display (rest
blocks; twelve blocks per run). The left/right tapping conditions were
cued by flashing arrows that pointed to the left and to the right of the
visual display. Each block consisted of the stimulus presented for 500 ms
with a 500 ms inter-stimulus interval. The order of the experimental
blocks was randomized and interleaved with rest blocks. Each experi-
mental block lasted 20 s; each rest block lasted 10 s. Stimuli were pre-
sented using E-Prime (Psychology Software Tools, Pittsburgh, PA) and
displayed using a back-projection system. Participant responses were
collected via a Celeritas 5-button fiber optic response unit so that we
could ensure that participants were following the instructions of the task.
Subsequent analyses assessed the number of hits, misses, and reaction
time for all participants.

Participants also performed a visual and auditory task during the
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fMRI session and these tasks were analyzed to assess whether sensori-
motor network segregation was related to neural distinctiveness in other
brain regions during other tasks. The visual task consisted of one 6-min
run with six 20-s blocks of faces and six 20-s blocks of houses, pre-
sented in a pseudorandom order. All experimental blocks were inter-
leaved with 10-s fixation blocks. During the face blocks, participants
viewed greyscale images of male faces. During the house blocks, partic-
ipants viewed greyscale images of houses. Each stimulus appeared for
500 ms, after which there was a 500 ms inter-stimulus interval. To ensure
that participants were attending to the visual stimuli, they were
instructed to press a button with their right index finger whenever they
saw a female face during the face blocks and whenever they saw an
apartment building during the house blocks. These “target” trials
occurred about once per minute. Stimuli were presented using E-Prime
2.0 on a back-projection system. Participants’ responses were recorded
using a Lumina response pad (Cedrus).

The auditory task consisted of six 20-s blocks of foreign speech clips,
six 20-s blocks of instrumental music clips, and twelve 10-s blocks of
fixation between each pair of auditory blocks. The order of speech and
music blocks was pseudorandomized. Specifically, each speech block
consisted of 20-s news segments in one of the following foreign lan-
guages: Creole, Macedonian, Marathi, Persian, Swahili and Ukrainian.
Each music block consisted of 20-s segments of instrumental music from
one of the following pieces: Bach Sinfonia No. 5, Smokey by Mountain,
Bamboula by L.M Gottschalk, Spagnoletta Nuova by Fabritio Caroso,
Kuhlau: Fantaisie for Solo Flute in D major (Op. 38, No. 3), and a violin
adaptation of the country song “When the right one comes along”. To
ensure that participants were attending to the auditory stimuli, target
trials (consisting of guitar plucks) occurred randomly about once per
minute during the task. Participants were instructed to press a button
with their right index finger every time a target trial was presented.
Auditory stimuli were presented using E-Prime 2.0 via an MRI-
compatible Avotec Conformal Headset.

FreeSurfer and FSFAST were used to perform the preprocessing and
first-level analyses of the task-based fMRI data (http://surfer.nmr.mgh
.harvard.edu/). Surface-based methods as implemented in the Free-
Surfer environment were used to reconstruct the cortical surface from the
T1-weighted anatomical image. Preprocessing procedures included slice-
timing correction, motion correction, and spatial smoothing using a
Gaussian kernel with full width at half maximum of 5 mm. Given that the
resting state data were preprocessed in MNI space (see above), we also
analyzed the task-based data in MNI space to allow direct comparison
with the volume-based resting state data. For this procedure, we per-
formed the same preprocessing steps (except for the denoising steps) for
the task-based data as we did for the resting state data.

Neural distinctiveness was measured using multi-voxel pattern anal-
ysis (MVPA) in both anatomically- and functionally-defined regions of
interest (ROIs). Neural responses were first estimated by fitting a General
Linear Model, implemented in FSFAST. The model included separate
regressors for each of the experimental blocks convolved with a canonical
hemodynamic response function.

Using FreeSurfer’s Cortical Parcellation technique (Dale et al., 1999;
Fischl and Dale, 2000; Fischl et al., 2004), we created bilateral anatom-
ical masks in each participant that included precentral gyrus, postcentral
gyrus, and supramarginal gyrus. Estimates of GM volume were also
computed in each of these anatomical regions to account for age differ-
ences in brain structure. Next, we used custom MATLAB code to define
each participant’s functional ROI. To do so, we first sorted the vertices
within each participant’s anatomical mask based on activation level for
left hand tapping (experimental condition 1) vs. rest. We then sorted the
vertices within the anatomical ROI for right hand tapping (experimental
condition 2) vs. rest. Finally, the functional ROI was defined by alter-
nating between the two sorted lists, adding the most active voxel for
condition 1 that had not already been included to the functional ROI,
then adding the most active voxel for condition 2 that had not already
been included, then the next most active voxel for condition 1, and so on.
4

This procedure was continued until we reached our target functional ROI
size of 2000 vertices (see Fig. 1), which corresponds to a surface area of
approximately 600 mm2. This same procedure was used to create a visual
functional ROI for each participant, but using the functional contrasts
faces vs. fixation and houses vs. fixation within an anatomical mask that
included left and right fusiform gyrus and left and right parahippocampal
gyrus. Likewise, an auditory functional ROI was computed using the
speech vs. rest and music vs. rest contrasts within an anatomical mask
that included bilateral superior temporal gyrus, bank of the superior
temporal sulcus, transverse temporal gyrus and supramarginal gyrus.

It is also important to note that this ROI-defining procedure was
orthogonal to the hypotheses tested later (involving age and behavior).
The region-defining analyses were based on two within-subject com-
parisons: left vs. fixation and right vs. fixation. Specifically, the most
active vertices for each of these contrasts in each participant were
included in that participant’s functional ROI. Neural distinctiveness be-
tween the left and right conditions was then computed within this
functional ROI. In contrast, the hypothesis testing involved two orthog-
onal between-subject contrasts, one involving age (is neural distinctive-
ness significantly different in young vs. older participants?) and one
involving behavior (do participants exhibiting lower neural distinctive-
ness also exhibit worse sensorimotor performance?).

After defining each participant’s functional ROI, we used the activa-
tion estimates within each participant’s functional ROI to measure the
distinctiveness of multi-voxel representations for the two experimental
tasks (i.e., left vs. right hand tapping). Inspired by Haxby and colleagues
(Haxby et al., 2001), neural distinctiveness was defined as the difference
between the average within-condition Pearson correlation (i.e., the
average of the correlations between left hand patterns and the correla-
tions between right hand patterns) and between-conditions (i.e., the
average of the correlations between left-hand and right-hand patterns).
Higher scores indicate greater distinctiveness whereas lower scores
indicate less distinctiveness. This approach was used rather than alter-
native classification methods (i.e., support vector machines) to avoid
ceiling effects in classifier accuracy (Carp et al., 2011a) (a linear SVM
classifier was 100% accurate in classifying the activation patterns for
28/46 older adults and 18/25 younger adults).

To allow direct comparison with the volume-based resting state data,
we also analyzed the task-based data in MNI space using the Power et al.
(2011) sensorimotor hand ROIs as an anatomical mask (which includes
about 435 voxels) for each subject. We used each participant’s activation
estimates within this mask to measure the distinctiveness of multi-voxel
activation patterns associated with the experimental conditions (i.e., left
vs. right hand tapping).

We also investigated main effects of age on univariate activation,
using second-level t-tests with SPM. In these models, age effects on three
first-level contrasts (1. right hand movement, 2. left hand movement, and
3. right vs. left hand movement) were examined and motion was
included as a covariate. Statistical significance was determined by
applying a family wise error (FWE) of p < .05 at the peak level to correct
for multiple comparisons.

3. Results

3.1. Age differences in sensorimotor performance

There were no age differences in performance during the sensori-
motor fMRI task, either in hits (t(65) ¼ 0.11, p ¼ .92), misses (t(65) ¼
0.66, p.51), or reaction time (t(65) ¼ 0.044, p ¼ .97).

The factor analysis of all sensorimotor behavioral measures identified
two factors: (1) grip strength and endurance and (2) fine motor dexterity.
These two sensorimotor factors were used in all further statistical ana-
lyses. Given that grip strength and endurance reflect gross motor per-
formance whereas dexterity reflects fine motor performance, we refer to
the grip strength/endurance factor as “gross motor performance” and to
the dexterity factor as “fine motor performance”.

http://surfer.nmr.mgh.harvard.edu/
http://surfer.nmr.mgh.harvard.edu/


Fig. 1. Functional mask (size ¼ 1000 vertices in each hemisphere) from a representative older adult participant used for calculating neural distinctiveness of
sensorimotor representations evoked from right vs. left hand finger tapping.
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Significant age differences were observed in both gross (t(68) ¼ 2.69,
p ¼ .009; Fig. 2A) and fine (t(68) ¼ 5.01, p < .001; Fig. 2B) motor per-
formance, with older adults exhibiting worse performance than younger
adults. To test whether sex differences influenced these results, we per-
formed follow-up ANCOVAs using age group as the independent vari-
able, behavior as the dependent variable, and sex as a covariate. After
controlling for sex, we still observed significant age differences in both
gross (F(1, 67) ¼ 14, p < .001) and fine (F(1, 67) ¼ 24.74, p < .001)
motor performance. Moreover, there were no significant sex by age group
interactions.
3.2. Age differences in network segregation

Consistent with our previous findings (Cassady et al., 2019), we found
that sensorimotor network segregation was significantly reduced in older
Fig. 2. Significant age differences were observed in A) a summary measure of gross m
.001); C) sensorimotor network segregation (t ¼ 2.55, p ¼ .013); and D) neural dist
(blue) and older (red) adults.

5

compared to younger adults, t(69) ¼ 2.55, p ¼ .013 (See Fig. 2C). To test
whether sex influenced these results, we performed a follow-up ANCOVA
using sex as a covariate in the model. After controlling for sex, we still
found that sensorimotor segregation was significantly reduced in older
compared to younger adults, (F(1, 67)¼ 6.7, p¼ .012). Again, there were
no significant sex by age group interactions.
3.3. Age differences in neural distinctiveness

The distinctiveness of activation patterns evoked by left vs. right hand
movement was significantly lower in older compared to younger adults,
t(62)¼ 2.29, p¼ .025 (See Fig. 2D). Further, this effect was still observed
after controlling for sex, (F(1, 61) ¼ 5.11, p ¼ .027), and there were no
significant sex by age group interactions.

To test whether functional ROI size influenced these results, we
otor performance (t ¼ 2.69, p ¼ .009); B) fine motor performance (t ¼ 5.01, p <

inctiveness of sensorimotor representations (t ¼ 2.29, p ¼ .027) between young
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performed a repeated measures ANOVA with a Greenhouse-Geisser
correction using ROI size as the within-subjects factor (using ten func-
tional ROI sizes of 50, 100, 200, 300, 400, 600, 1000, 2000, 5000, and
10,000 vertices) and age group as the between-subjects factor. The re-
sults revealed a significant within-subject effect of ROI size on neural
distinctiveness, F(1.68, 107.71) ¼ 47.41, p < .001. Specifically, activa-
tion patterns for left vs. right hand movement were more distinctive at
smaller ROI sizes and less distinctive at larger ROI sizes, F(1, 64)¼ 54.97,
p < .001 (See Fig. 3). More importantly, the age differences in neural
distinctiveness that we observed did not vary with ROI size (i.e., there
was not a significant ROI size x age group interaction (F(1.68, 107.71) ¼
0.70, p ¼ .48). Neural distinctiveness was also significantly reduced in
older compared to younger adults using the Power sensorimotor
anatomical mask after processing the task-based data in MNI space, t(66)
¼ 2.1, p ¼ .041.

In terms of univariate activation, we found that older adults activated
a cluster including right precentral and superior frontal gyrus in addition
to a smaller cluster including left precentral gyrus significantly more than
young adults during right finger tapping (See Fig. S1). We found no age
differences in either left vs. rest or left vs. right finger tapping. For the
significant clusters, we extracted the average beta value for each
participant (YA group mean ¼ �0.34, SE ¼ 0.06; OA group mean ¼ .25,
SE ¼ 0.04) and included these as nuisance covariates in our subsequent
statistical analyses (see below).

3.4. Relationship between network segregation and neural distinctiveness

We performed partial correlation analyses to assess the relationship
between sensorimotor neural distinctiveness and sensorimotor network
segregation. Controlling for age, GM volume, motion, and univariate
activation, we observed a positive relationship between distinctiveness
and segregation across all participants, r(57) ¼ 0.36, p ¼ .006 (see
Fig. 4A). Using the volume-based (rather than surface-based) distinc-
tiveness measure in the partial correlation model (including the same
nuisance covariates), we again observed a positive relationship between
neural distinctiveness and network segregation, r(59) ¼ 0.43, p ¼ .001
(see Fig. 4B).

To examine the specificity of the relationship between distinctiveness
and segregation in the sensorimotor system, we calculated the partial
Fig. 3. Neural distinctiveness as a function of ROI size in young (blue) and older
(red) adults. Sensorimotor cortical activation patterns for right vs. left hand
movement were more distinctive at smaller ROI sizes and less distinctiveness at
larger ROI sizes across all participants. However, the effect of ROI size did not
significantly influence the observed age differences in neural distinctiveness (F
¼ 0.70, p ¼ .48). Error bars denote the standard error of the mean.
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correlation between sensorimotor neural distinctiveness and mean
network segregation (averaged across all 10 networks). Controlling for
age, GM volume, motion, and univariate activation, we observed a pos-
itive relationship, r(57) ¼ 0.39, p ¼ .003. We also examined the associ-
ation between sensorimotor neural distinctiveness and network
segregation outside of sensorimotor cortex (i.e., visual and auditory
network segregation). We observed no significant relationships, either
between sensorimotor neural distinctiveness and visual (r(59) ¼ 0.13, p
¼ .33) or auditory (r(59) ¼ 0.17, p ¼ .19) network segregation. Finally,
we examined the association between sensorimotor network segregation
and neural distinctiveness in ventral visual cortex (VVC) and auditory
cortex (based on visual and auditory tasks, respectively). We did not
observe a significant relationship between sensorimotor segregation and
visual (r(61) ¼ 0.25, p ¼ .05) or auditory (r(60) ¼ 0.14, p ¼ .28) neural
distinctiveness, although the association with visual distinctiveness
approached significance.

3.5. Predicting behavior from models that include both network segregation
and neural distinctiveness

We performed multiple regression analyses to predict sensorimotor
performance based on age group, network segregation and neural
distinctiveness (while controlling for GM volume, motion, and univariate
activation). Please refer to Table S1 of supplemental material for corre-
lation table that includes all factors used in model. We first created a
model to predict gross sensorimotor performance. The fit of the overall
model was significant (F(9,54)¼ 3.7, p¼ .001) with an R2 of 0.38 and an
adjusted R2 of 0.28. Segregation was a significant predictor (B ¼ 0.36, t
¼ 2.4, p ¼ .041) (Fig. 5A) but distinctiveness was not (B ¼ �0.02, t ¼
�0.13, p ¼ .90) (Fig. 5B). There were no significant age group in-
teractions, either between age group and segregation (B ¼ �.48, t ¼
�0.7, p ¼ .49) or between age group and distinctiveness (B ¼ 0.49, t ¼
�1.2, p ¼ .22). We next created a model to predict fine sensorimotor
performance from the same factors/covariates. Again, the fit of the
overall model was significant (F(9,54) ¼ 4.57, p < .001) with an R2 of
0.43 and an adjusted R2 of 0.34. Segregation was a significant predictor
(B ¼ 0.36, t ¼ 2.6, p ¼ .013) (Fig. 5C) but distinctiveness was not (B ¼
0.13, t ¼ 0.92, p ¼ .36) (Fig. 5D). There were no significant age group
interactions, either between age group and segregation (B ¼ �.5, t ¼
�0.75, p¼ .45) or between age group and distinctiveness (B¼�0.18, t¼
�0.47, p ¼ .64).

4. Discussion

Previous studies have found that measures of neural dedifferentiation
are associated with worse behavior among older adults. However, neural
dedifferentiation has been operationalized in two very different ways in
the field: task-based fMRI studies have measured the distinctiveness of
neural activation patterns evoked by different task conditions, while
resting-state fMRI studies have measured the segregation or modularity
of resting-state networks. Both measures decline with age and both have
been associated with individual differences in behavior, but how (or
whether) the two measures relate to each other is currently unknown.
The present study examined the potential links between sensorimotor
neural distinctiveness, sensorimotor network segregation, and sensori-
motor behavior, all in the same participants. Consistent with previous
findings, older adults exhibited reduced sensorimotor neural distinc-
tiveness and reduced sensorimotor (resting state) network segregation
relative to younger adults. A novel finding of the present study was that
participants with the most distinct sensorimotor representations exhibi-
ted the most segregated sensorimotor networks. Further, sensorimotor
network segregation was associated with individual differences in
sensorimotor performance, particularly in older adults, whereas senso-
rimotor neural distinctiveness was not. These findings link, for the first
time, sensorimotor network segregation to sensorimotor neural distinc-
tiveness. They also suggest that sensorimotor network segregation may



Fig. 4. A) Relationship between sensorimotor network segregation and neural distinctiveness of sensorimotor representations using the functional ROI and B) using
the Power sensorimotor network ROI across all participants after controlling for the effects of age, GM volume, motion and univariate activation.

Fig. 5. A) Relationship between gross motor performance and A) network segregation and B) neural distinctiveness. Relationship between fine motor performance
and C) network segregation and D) neural distinctiveness. Plots are illustrated as partial correlations, controlling for the effects of age, GM volume, motion and
univariate activation.
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be a more sensitive predictor of age-related declines in sensorimotor
behavior.

4.1. Age differences in network segregation and neural distinctiveness

Consistent with previous work (Cassady et al., 2019), we found that
sensorimotor network segregation is significantly lower in older adults
than in younger adults. Although we focused exclusively on the senso-
rimotor network in this study, previous studies have reported significant
age differences in several sensorimotor and association (i.e., higher order
cognitive) networks, suggesting that age-related reductions in network
segregation occur at the whole-brain (i.e., multiple network) level.

We also demonstrated that older adults have significantly less
distinctive neural representations in sensorimotor cortex than younger
adults. This finding is consistent with previous studies that reported age
differences in neural distinctiveness involving motor (Carp et al., 2011a),
visual (Park et al., 2004, 2010; Carp et al., 2011b), auditory ((Lalwani
et al., 2018)), and memory representations (Carp et al., 2010; Koen et al.,
2018). Together, these findings suggest that age differences in neural
distinctiveness are not limited to sensorimotor cortex, but rather are a
general feature of the aging brain.

4.2. Network segregation is related to neural distinctiveness

Our study is the first to show that resting state sensorimotor network
segregation varies with the distinctiveness of task-based activation pat-
terns in sensorimotor cortex. This finding is consistent with previous data
suggesting a relationship between the brain’s large-scale functional or-
ganization at rest and its functional recruitment during task performance
(Langan et al., 2010; Chan et al., 2017).

In the context of aging, age differences in resting state brain organi-
zation may provide a network-based explanation for the commonly
observed finding of age-related neural dedifferentiation of task-evoked
activity. Or perhaps other neural factors influence the differentiation of
both resting state networks and task-evoked activity. For instance, pre-
vious work by our group indicates that lower levels of the inhibitory
neurotransmitter, gamma aminobutyric acid (GABA), are associated with
reduced network segregation (Cassady et al., 2019) and reduced neural
distinctiveness (Lalwani et al., 2019). Reduced white matter integrity
(Burzynska et al., 2010) and amyloid deposition (Buckner et al., 2009;
Mormino et al., 2011) also disrupt the organization of functional net-
works and brain activity. Future work could employ multimodal imaging
to investigate potential interactions between brain structure, function,
and chemistry.

We also observed a significant association between sensorimotor
neural distinctiveness and mean network segregation (averaged across
all 10 networks). It is therefore logical to question whether the rela-
tionship between neural distinctiveness and network segregation is
regionally specific or not. Our results suggest that the relationship is
regionally-specific, at least to some degree. For example, sensorimotor
segregation was significantly correlated with sensorimotor distinctive-
ness, but not with neural distinctiveness outside of sensorimotor cortex
(i.e., auditory and visual cortex, although the relationship with visual
distinctiveness approached significance). Similarly, sensorimotor neural
distinctiveness was not correlated with network segregation outside of
sensorimotor cortex (i.e., auditory and visual cortex). Furthermore, given
that sensorimotor segregation is highly correlated with mean segregation
(r¼ .62, p< .001), it is not surprising that sensorimotor distinctiveness is
associated with both sensorimotor and mean network segregation.

4.3. Network segregation (but not neural distinctiveness) is associated with
sensorimotor performance

The present results demonstrate that sensorimotor network segrega-
tion (but not sensorimotor neural distinctiveness) is associated with
sensorimotor performance, and that this relationship is particularly
8

strong in older adults. Specifically, older individuals with less segregated
networks exhibited worse sensorimotor performance (both gross and
fine) than older adults with more segregated networks. Importantly, this
relationship remained significant even after controlling for neural
distinctiveness. In contrast, although there was a trend toward a positive
relationship between neural distinctiveness and fine motor performance
across all participants, this relationship was not observed within either
age group separately. These findings suggest that network segregation
may be a more sensitive predictor of age-related declines in sensorimotor
performance than neural distinctiveness.

A natural question is why would segregation be a better predictor of
sensorimotor behavior relative to distinctiveness? Although this study
did not attempt to address that question specifically, we can rule out a
few potential confounds. One potential confound is differences in data
reliability; perhaps neural distinctiveness is a noisier measure than
network segregation. To investigate that possibility, we analyzed resting
state and task-based fMRI data from 47 participants who performed the
fMRI tasks described here in two separate sessions, once on placebo and
once after taking a benzodiazepine (Lorazepam) (see Gagnon et al., 2019;
for details). And despite the pharmacological manipulation, the test-
retest reliability of the neural distinctiveness measure was quite strong
(intraclass correlation of 0.72) and actually higher than the reliability of
the segregation measure (0.51). Another possibility is that the neural
distinctiveness measure takes on a more restricted range of values and is
therefore more difficult to relate to other measures (a restriction of range
problem). However, variability in distinctiveness across participants was
actually much higher than variability in segregation (across the entire
sample and in both age groups separately). Thus, the finding that
segregation is significantly related to behavior while distinctiveness is
not cannot be attributed to differences in either reliability or in
variability.

We also performed follow-up regional-mean activation analyses to
rule out overall activation effects. In particular, if average activation is
lower in the older group, then that could potentially reduce within-
condition similarity because the signal is harder to distinguish from the
noise. However, we found that for both the left vs. fixation and the right
vs. fixation contrast, the older adult group actually exhibited slightly
more activation than the young. If stronger responses lead to greater
within-condition similarity and therefore greater distinctiveness, then
distinctiveness should have increased with age in our sample. However,
we observed the opposite. Thus, we do not think the observed results
were driven by overall activation effects.

We hypothesize that one reason segregation may be a better predictor
of sensorimotor performance than neural distinctiveness is that the
segregation measure reflects the interaction of multiple large-scale
distributed brain networks. In contrast, neural distinctiveness is based
on task-based activation patterns in localized regions of interest. Given
that most sensorimotor functions require the interaction of multiple brain
areas, it is likely that regions outside of these localized ROIs are
contributing to the associated declines in behavior. This may be one
reason why segregation is a better predictor of sensorimotor performance
compared to neural distinctiveness.

Another possibility is that resting state measures of fMRI provide a
more stable, “trait-like” measure of brain function compared to task-
based measures, which are less stable and more “state-like”. Because of
the relative stability of resting state functional connectivity, many studies
use it as a trait measure. In contrast, functional activity inherently pro-
vides a transient, state-dependent measure of brain characteristics. For
instance, Cole and colleagues demonstrated that functional connectivity
between brain regions at rest is more informative for predicting indi-
vidual differences in fluid intelligence compared to task-evoked activity
of functional regions in isolation (Cole et al., 2012). However, it could be
the case that the task used to calculate neural distinctiveness in the
present study was too specific or irrelevant to the sensorimotor (outside
of the scanner) behavioral factors. It would be interesting for future
studies to explore this question using similar in-scanner and
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out-of-scanner tasks, both to calculate neural distinctiveness and senso-
rimotor behavior. Overall, our findings suggest that trait-based measures
such as resting state functional connectivity may be more sensitive in
predicting individual differences in behavior compared to task-based
state measures such as neural distinctiveness.

4.4. Limitations

One obvious limitation of this study is that our sample was cross
sectional. We can therefore we can only make inferences about age dif-
ferences rather than longitudinal changes that occur with age. Future
longitudinal designs could examine age-related changes in neural and
behavioral measures as well as the relationship between them over time.

Furthermore, the present study employed a simple unimanual thumb
tapping task. We were therefore unable to examine the effects of aging on
the neural representations of more realistic, complex movements or of
different individual movements. Relatedly, previous research has found
that, compared to younger adults, older adults are more likely to have
“mirror movements”, i.e., unintended movements that occur in homol-
ogous muscles contralateral to the voluntarily active ones (Koerte et al.,
2010). Thus, it could be that older participants have less differentiated
right/left motor brain responses because their physical movements are
less differentiated. However, the causality might actually go in the other
direction: less differentiated left/right brain responses could lead to less
differentiated physical movements rather than the other way around.
Regardless, we do not have a way to evaluate mirror movements in the
current study. Future studies that use more complex sensorimotor tasks
and that collect electromyography data to measure all bilateral move-
ments rather than only recording button presses could add additional
insight into the mechanisms of age-related neural dedifferentiation of
sensorimotor representations.

5. Conclusions

The present study examined the relationship between sensorimotor
network segregation, neural distinctiveness of sensorimotor representa-
tions, and sensorimotor behavior in young and older adults. Consistent
with previous studies, we found that sensorimotor networks are less
segregated and sensorimotor representations are less distinct in older
relative to young adults. We also discovered that less segregated net-
works are associated with less distinct representations. Finally, we found
that less segregated networks predict worse sensorimotor performance,
particularly within older adults, whereas neural distinctiveness is not
associated with performance. These findings link network segregation to
neural distinctiveness and suggest that segregation is a more sensitive
predictor of age-related declines in sensorimotor behavior.
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