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a b s t r a c t 

Most neuroimaging studies of brain function analyze data in normalized space to identify regions of common 

activation across participants. These studies treat interindividual differences in brain organization as noise, but 

this approach can obscure important information about the brain’s functional architecture. Recently, a number of 

studies have adopted a person-specific approach that aims to characterize these individual differences and explore 

their reliability and implications for behavior. A subset of these studies has taken a precision imaging approach 

that collects multiple hours of data from each participant to map brain function on a finer scale. In this review, 

we provide a broad overview of how person-specific and precision imaging techniques have used resting-state 

measures to examine individual differences in the brain’s organization and their impact on behavior, followed by 

how task-based activity continues to add detail to these discoveries. We argue that person-specific and precision 

approaches demonstrate substantial promise in uncovering new details of the brain’s functional organization and 

its relationship to behavior in many areas of cognitive neuroscience. We also discuss some current limitations in 

this new field and some new directions it may take. 
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. Introduction 

Most functional magnetic resonance imaging (fMRI) studies normal-

ze individual brains to a template, with the goal of finding common pat-

erns of activation across a group that can be generalized to a given pop-

lation. However, the shape and functional organization of brains differ

reatly between individuals, and normalization can never completely

ompensate for these differences. Worse yet, the same functional region

ay not be in the same anatomical region in different participants, so

ven perfect alignment of anatomical features could still lead to averag-

ng across regions that are functionally heterogeneous ( Fedorenko et al.,

010 ; Fedorenko and Kanwisher, 2009 ; Frost and Goebel, 2012 ; Nieto-

astanon and Fedorenko, 2012 ). 

Partially in response to these concerns, recent work has explored the

se of more person-specific methods when analyzing fMRI data. Rather

han treating individual differences in brain organization as noise, these

tudies aim to identify reliable patterns of activation or connectivity in

ndividuals even if those patterns are unique and different from those

f other participants. This body of work has provided evidence that in-

ividual differences in neural organization are reliable and may be rel-

vant to individual differences in behavior ( Braga and Buckner, 2017 ;
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inn et al., 2017 ; Finn et al., 2015 ; Gordon et al., 2020 ; Kong et al.,

019 ). If so, a clearer understanding of the relationship between person-

pecific imaging results and person-specific behavior could shed light on

ow behavior is implemented in the brain and have practical implica-

ions for the treatment and prevention of clinical disorders. 

This review provides a summary of recent explorations of person-

pecific imaging approaches, including the “precision ” (also referred to

s “deep ” or “dense ” sampling) neuroimaging approach ( Gordon et al.,

020 ; Gratton et al., 2020 ; Smith et al., 2021 ). There have been a

ew other recent reviews of precision neuroimaging literature focused

n specific subtopics (e.g., precision psychiatry or cognitive control;

ratton et al., 2020 ; Smith et al., 2021 ). This review is intended as a

road overview of how person-specific and precision approaches can

mprove our understanding of brain organization more generally. First,

e discuss the problems associated with traditional group analyses, and

ow such practices may lead to blurred, or even misleading, results.

ext, we review studies using person-specific and precision imaging ap-

roaches, first by examining work using resting-state measures, followed

y studies that incorporate task-based activation. We define person-

pecific studies as those that explicitly examine differences in brain ac-

ivity at the individual subject level, rather than combining subjects to-

ether and looking at group-level activation or connectivity patterns.
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or example, many person-specific studies have used methods such as

onnectome-based predictive modeling (CPM) to overcome limitations

n the generalizability of traditional approaches and have attempted to

elate individual differences in brain connectivity to individual differ-

nces in behavior. Other studies have used a precision neuroimaging

pproach, in which each individual is scanned for an extended period

f time (typically more than two hours) in order to develop more reli-

ble estimates of brain activity and organization at the individual sub-

ect level. Table 1 lists the studies reviewed in these sections by dataset

when available) to provide a quick reference to the work that has been

one. The final section of this review discusses the limitations of cur-

ent person-specific neuroimaging work and includes potential future

irections that may provide greater insight into individual differences

n brain organization and behavior. 

. Limitations of traditional imaging approaches 

The functional organization of the human brain shares many com-

onalities across people. The primary visual cortex can reliably be

ound in the occipital lobe. The primary motor cortex can reliably be

ound in the precentral gyrus. The primary auditory cortex can reliably

e found near Heschl’s gyrus. And the list goes on. This commonality

akes it possible to combine the neural activity in individual partici-

ants in a group analysis in order to identify activation that hopefully

eneralizes to the population from which the sample was drawn. 

However, each individual brain differs in size and shape ( Amunts and

illes, 2015 ; Frost and Goebel, 2012 ; Gordon et al., 2017 a; Gordon et al.,

017 b; Kong et al., 2019 ; Salvo et al., 2021 ; Seitzman et al., 2019 ),

nd so most fMRI studies conduct a series of steps to make individ-

al brains more similar to each other. One of the first such steps is

ormalization, which attempts to warp each individual’s brain in such

 way that the same anatomical location (e.g., the left lingual gyrus

r the posterior part of the right superior gyrus) in different people

ill be aligned in normalized space. Although this approach can work

elatively well for subcortical structures, the cortical surface is much

ore difficult to align across subjects due to the heterogeneity in cor-

ical folding patterns ( Frost and Goebel, 2012 ; Tucholka et al., 2012 ).

orse yet, many functional regions are in somewhat different anatom-

cal locations in different people, meaning that even if normalization

ould perfectly align a set of brains structurally, they would still not

e aligned functionally. For example, Frost and Goebel (2012) sought

o determine the extent to which anatomical and functional brain areas

orrespond across individuals using a series of functional localizers. De-

pite using curvature-based cortical alignment, which incorporates in-

ividual folding patterns to improve anatomical alignment, they found

hat many functional areas, such as language areas and the fusiform

ace area, vary considerably in anatomical location across individuals.

ikewise, Malikovic et al. (2007) found substantial variation across in-

ividual brains in the anatomical location of area V5/MT + . Based on

hese and similar results, Amunts and Zilles (2015) argued that new ap-

roaches to brain mapping are necessary to relate structure to function

e.g., Amunts and Zilles, 2015 ). 

Recent advances have attempted to mitigate the problems associated

ith traditional alignment methods. For example, Multi-modal Surface

atching (MSM) methods allow for different combinations of input fea-

ures to improve alignment, and hyperalignment aligns patterns of neu-

al activity across individuals ( Busch et al., 2021 ; Haxby et al., 2011 ;

axby et al., 2020 ; Robinson et al., 2018 ; Robinson et al., 2014 ). What

hese methods have in common is that they attempt to address the fact

hat traditional group-averaged analyses can obscure individual differ-

nces in brain topology. Traditional group analyses implicitly assume

hat all subjects have the same functional regions in the same anatom-

cal locations, but this assumption is often violated. And when it is,

eural signals from functionally distinct areas will be mixed together

uring group analysis, which could lead to results that may not reflect

ny person in the group. This idea has been proven using the ergodic
2 
heorems and has long been recognized in many scientific fields, in-

luding psychology and neuroscience ( Fisher et al., 2018 ; Molenaar and

ampbell, 2009 ; Seghier and Price, 2018 ). The problem is that most

sychological processes are not ergodic (i.e., processes where inter- and

ntraindividual variation are "asymptotically equivalent"; Molenaar and

ampbell, 2009 ), and so group data may not accurately reflect psycho-

ogical processes at an individual level. In fact, almost 70 years ago,

idman (1952) demonstrated that a group-averaged curve often does

ot represent any of the individual curves from which the average was

reated. Because the averaged data will only be similar to individual

ata under specific conditions, he determined that averaged data can-

ot be used to make inferences at the individual level. 

These same concerns apply to neuroimaging research. For example,

ssume that there is a brain region that performs the same function

n every individual subject, but that the location of that brain region

oes not overlap in any two participants after normalization. Group-

evel analyses looking for regions related to that function could then

iss this area despite its relevance to the function of interest. In this

ase, generalizing the group result to every individual in the group, and

he population from which the sample was drawn, is misleading and an

xample of the so-called ecological fallacy ( Fisher et al., 2018 ). 

. Identifying individual variation with resting-state connectivity 

.1. Connectome fingerprinting and person-specific connectivity 

Person-specific neuroimaging research aims to understand individ-

al differences in the brain, rather than treat these differences as noise.

any of these studies use publicly-available datasets, such as the Hu-

an Connectome Project (HCP; Van Essen et al., 2013 ), which aims

o examine individual differences, particularly in functional connec-

ivity in the brain. While previous individual difference studies have

ttempted to correlate functional connectivity with behavioral perfor-

ance, these measures often lacked reliability and were unlikely to be

eplicated ( Marek et al., 2022 ; Noble et al., 2021 ; Shen et al., 2017 ).

inn et al. (2015) introduced the connectome-based predictive model-

ng (CPM) method, which attempts to overcome limitations in generaliz-

bility by using whole-brain information to identify predictive networks

ith built-in cross-validation, rather than simply finding correlations

 Shen et al., 2017 ). They examined individual differences in resting-

tate functional connectivity (RSFC) in the HCP sample and demon-

trated that an individual could be accurately identified from a group

ased on their connectivity patterns. Individual identification based

n RSFC or “connectome fingerprinting ” ( Finn et al., 2015 ; Miranda-

ominguez et al., 2014 ; Xu et al., 2016 ) has been used repeatedly

o examine individual differences in brain connectivity. For example,

iran et al. (2016) explored several metrics contributing to individ-

al identification, and found that individual differences in connectivity

ere largest in association and frontoparietal networks, consistent with

ther findings ( Chen et al., 2015 ; Mueller et al., 2013 ; Peña-Gómez et al.,

018 ). Additionally, whereas many studies compute a single, stable

unctional connectome, Liu et al. (2018) found that time-varying char-

cteristics of RSFC (termed the “chronnectome ” or dynamic functional

onnectivity) also reliably identify individuals from a group. Moreover,

hen and Hu (2018) used a recurrent neural network that incorporated

emporal and spatial information to accurately identify individuals with

nly 72 seconds of data, and Byrge and Kennedy (2019) found that no

pecific sets of connections were necessary for accurate individual iden-

ification. These results suggest that connectivity in many different areas

f the brain include person-specific features (features present in indi-

iduals despite their absence in group averages; also known as "trait-

ike" or "network variants"; Gordon et al., 2017 a; Gratton et al., 2018 ;

eitzman et al., 2019 ). 

Individual differences in functional connectivity have also been

ound to be stable over time. For example, Miranda-Dominguez and col-

eagues (2018) found that connectome fingerprinting remains accurate
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Table 1 

Literature review. 

Citation 

Dataset 

Number Dataset Name Sample Population Sessions Tasks 

RS-fMRI 

(min./session) Dataset Availability 

Resting-state fMRI studies 

Byrge and Kennedy (2019 ) 1 HCP 835 (NA) Healthy 2 - 30 https://www.humanconnectome.org 

2 ABIDE 54 (11F) Healthy, Autism 

Spectrum Disorder 

2-3 1 32 http://fcon_1000.projects.nitrc.org/indi/abide/abide_II.html 

Chen and Hu (2018 ) 1 HCP 100 (54F) Healthy 2 - 30 https://www.humanconnectome.org 

Demeter et al. (2020 ) 1 - 30 (9F) Healthy pediatric 2 - 6-12 - 

2 MSC 20 (5F) Healthy 2 - 30 https://openneuro.org/datasets/ds000224/versions/00001 . 

3 - 30 (24F) Healthy pediatric 1 - 6-12 - 

4 HCP 50 (26F) Healthy 1 - 15-30 https://www.humanconnectome.org 

5 - 38 (16F) Healthy pediatric 1 - 6-12 - 

6 HCP 50 (26F) Healthy 1 - 15-30 https://www.humanconnectome.org 

7 - 34 (12F) Healthy pediatric 1 - 15-30 - 

Finn et al. (2015 ) 1 HCP 126 (86F) Healthy 2 4 30 https://www.humanconnectome.org 

2 Yale 45 (17F) Healthy 1 - 45 

Kashyap et al. (2019 ) 1 HCP 803 (NA) Healthy 2 - 30 https://www.humanconnectome.org 

Liu et al. (2018 ) 1 HCP 105 (68F) Healthy 2 - 30 https://www.humanconnectome.org 

Liu et al. (2019 ) 1 HCP 801 (443F) Healthy 2 - 30 https://www.humanconnectome.org 

2 HCP 183 (81F) Healthy 2 - 30 https://www.humanconnectome.org 

Miranda-Dominguez et al. (2018 ) 1 - 159 (64F) Healthy 1-3 - 5 

2 HCP 198 (109F) Healthy 2 - 30 https://www.humanconnectome.org 

Noble et al. (2017 ) 1 - 12 (6F) Healthy 4 - 36 - 

2 HCP 606 (NA) Healthy 2 - 30 https://www.humanconnectome.org 

Smith et al. (2015 ) 1 HCP 461 (271F) Healthy 2 - 30 https://www.humanconnectome.org 

Wang et al. (2021 ) 1 HCP 886 (NA) Healthy 2 - 30 https://www.humanconnectome.org 

Wang et al. (2015 ) 1 - 25 (9F) Healthy 5 - 12 - 

2 HCP 100 (54F) Healthy 2 7 30 https://www.humanconnectome.org 

3 GSP 104 (56F) Healthy 1 - 6 https://dataverse.harvard.edu/dataset.xhtml?persistentId = doi:10. 

7910/DVN/25833 

4 - 8 (5F) Epilepsy 1 5 12 - 

Badhwar et al. (2020) † 1 - 1 (0F) Healthy 25 - 9-10 https://zenodo.org/record/3350885#.YUIUSJ1KiUk 

2 HNU 30 (15F) Healthy 10 - 10 https://figshare.com/s/7dac285e153e176d90e8 

Chen et al. (2015 ) 1 HNU 30 (15F) Healthy 10 - 10 https://figshare.com/s/7dac285e153e176d90e8 

Peña-Gómez et al. (2018 ) 1 HNU 30 (15F) Healthy 10 - 10 http://fcon_1000.projects.nitrc.org/indi/CoRR/html/hnu_1.html 

2 GSP 40 (15F) Healthy 2 - 6 https://dataverse.harvard.edu/dataset.xhtml?persistentId = doi:10. 

7910/DVN/25833 

Xu et al. (2016 ) 1 HNU 30 (15F) Healthy 10 - 10 http://fcon_1000.projects.nitrc.org/indi/CoRR/html/hnu_1.html 

2 eNKI-TRT 20 (4F) Representative Sample 2 - 10 http://fcon_1000.projects.nitrc.org/indi/pro/eNKI_RS_TRT/ 

FrontPage.html 

3 QTIM 272 (204F) Twins 1 - 5 https://imaginggenomics.net.au/projects/qtim/ 

Gordon et al. (2017c ) 1 MSC 10 (5F) Healthy 10 3 30 https://openneuro.org/datasets/ds000224/versions/00001 

Gordon et al. (2020 ) 1 MSC 10 (5F) Healthy 1-10 3 30 https://openneuro.org/datasets/ds000224/versions/00001 . 

Gratton et al. (2018 ) 1 MSC 10 (5F) Healthy 10 3 30 https://openneuro.org/datasets/ds000224/versions/00001 

Greene et al. (2020 ) 1 MSC 10 (5F) Healthy 10 - 30 https://openneuro.org/datasets/ds000224/versions/00001 . 

Lynch et al. (2020 ) 1 - 4 (0F) Healthy 12-24 - 174-348 - 

2 MSC 10 (5F) Healthy 10 - 30 https://openneuro.org/datasets/ds000224/versions/00001 . 

3 CAST 3 (1F) Healthy 42-64 - 30 https://openneuro.org:443/datasets/ds002766 

4 MyConnectome 1 (0F) Healthy 104 6 10 http://openfmri.org/dataset/ds000031 

Sylvester et al. (2020 ) 1 MSC 10 (5F) Healthy 10 - 30 https://openneuro.org/datasets/ds000224/versions/00001 . 

Poldrack et al. (2015 ) 1 MyConnectome 1 (0F) Healthy 104 6 10 http://openfmri.org/dataset/ds000031 

Laumann et al. (2015 ) 1 MyConnectome 1 (0F) Healthy 84 6 10 http://openfmri.org/dataset/ds000031 

2 - 1 (0F) Healthy 10 - 30 - 

3 WashU 120 120 (60F) Healthy 1 - 14 https://legacy.openfmri.org/dataset/ds000243/ 

( continued on next page ) 
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Table 1 ( continued ) 

Citation Dataset 

Number 

Dataset Name Sample Population Sessions Tasks RS-fMRI 

(min./session) 

Dataset Availability 

Gordon et al. (2017a ) 1 - 1 (NA) Healthy 10 - 30 

2 WashU 120 120 (60F) Healthy 1 - 14 https://legacy.openfmri.org/dataset/ds000243/ 

Marek et al. (2019 ) 1 ABCD 2188 

(1144F) 

Healthy 1-2 - 20 https://nda.nih.gov/abcd 

Lake et al. (2019) 1 ABIDE 1044 (NA) Healthy, Autism 

Spectrum Disorder 

2-3 1 8 ± 2 (mean ± 
SD) 

https://fcon_1000.projects.nitrc.org/indi/abide/ 

2 ADHD-200 776 (NA) Healthy, ADHD 1 1 24 https://fcon_1000.projects.nitrc.org/indi/adhd200/ 

Horien et al. (2019 ) 1 SLIM 105 (49F) Healthy 3 - 8 http://fcon_1000.projects.nitrc.org/ 

2 CoRR 93 (45F) Healthy 2-3 - 5 http://fcon_1000.projects.nitrc.org/indi/CoRR/html/samples.html 

3 CoRR 79 (58F) Healthy 2 - 12 http://fcon_1000.projects.nitrc.org/indi/CoRR/html/samples.html 

4 CoRR 26 (0F) Healthy 2 - 24 http://fcon_1000.projects.nitrc.org/indi/CoRR/html/samples.html 

Filevich et al. (2017 ) 1 Day2Day 8 (6F) Healthy 11-50 - 5 Available upon request 

Jalbrzikowski et al. (2020 ) 1 FCON 1000 140 (73F) Healthy 1-2 1 16 http://fcon_1000.projects.nitrc.org/ 

2 FCON 1000 208 (104F) Healthy 1-3 - 5 

Choe et al. (2015 ) 1 Kirby 1 (0F) Healthy 158 - 7 http://www.nitrc.org/projects/kirbyweekly 

2 Kirby 21 (10F) Healthy 1 - 7 http://www.nitrc.org/projects/multimodal 

Airan et al. (2016 ) 1 KKI 21 (10F) Healthy 2 - 30 http://fcon_1000.projects.nitrc.org/indi/pro/nki.html 

2 NKI 23 (6F) Healthy 2 - 5 

3 NKI 23 (6F) Healthy 2 - 10 

4 NKI 23 (6F) Healthy 2 - 10 

Allen et al. (2022 ) 1 NSD 8 (6F) Unreported 30-40 1 100-180 http://naturalscenesdataset.org/ 

Duchesne et al. (2019) † 1 SIMON 1 (0F) Healthy 73 - 9-10 http://fcon_1000.projects.nitrc.org/indi/retro/SIMON.html 

Braga and Buckner (2017 ) 1 - 4 (4F) Healthy 24 - 7 - 

Brennan et al. (2019 ) 1 - 41 (17F) Obsessive-Compulsive 

Disorder 

2 - 12 - 

Dosenbach et al. (2010 ) 1 - 192 (115F) Mixed 1 - ∼5 - 

Fan et al. (2021 ) 1 - 70 (NA) First-episode 

adolescent-onset 

schizophrenia and 

age-matched controls 

1 - 8 - 

2 - 183 (101F) Mixed 1 - ∼5 - 

3 - 143 (99F) Mixed 1 - ∼5 - 

Gordon et al. (2017b ) 1 - 120 (60F) Healthy 1 - 14 - 

2 - 108 (69F) Healthy 1 - 10 - 

Gordon et al. (2018 ) 1 - 26 (5F) TBI 2-5 - 5-44 - 

Mueller et al. (2013 ) 1 - 25 (9F) Healthy 2-5 - 12 - 

Miranda-Dominguez et al. (2014 ) 1 - 27 (16F) Healthy 1 - 6-23 - 

2 - 5 (NA) Healthy 2 - 6-23 - 

Newbold et al. (2020 ) 1 CAST 3 (1F) Healthy 42-64 - 30 https://openneuro.org:443/datasets/ds002766 

Ousdal et al. (2020 ) 1 - 75 (49F) Healthy 2 - 8 Available upon request 

Wang et al. (2020 ) 1 - 158 (84F) Schizophrenia, 

Schizoaffective Disorder, 

Bipolar Disorder with 

psychosis 

1 - 6-12 - 

Task-based fMRI studies 

Avery et al. (2020 ) 1 HCP 502 (274F) Healthy 2 1 30 https://www.humanconnectome.org 

2 - 157 (105F) Healthy, Amnestic Mild 

Cognitive Impairment, 

Alzheimer’s Disease 

1 - - - 

Cole et al. (2014 ) 1 - 15 (7F) Healthy 1 64 10 - 

2 HCP 118 (NA) Healthy 2 7 30 https://www.humanconnectome.org 

Cole et al. (2016 ) 1 HCP 100 (54F) Healthy 2 7 30 https://www.humanconnectome.org 

( continued on next page ) 
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Table 1 ( continued ) 

Citation Dataset 

Number 

Dataset Name Sample Population Sessions Tasks RS-fMRI 

(min./session) 

Dataset Availability 

Cole et al. (2019 ) 1 HCP 75 (NA) Healthy 2 7 30 https://www.humanconnectome.org 

Finn et al. (2017 ) 1 HCP 716 (392F) Healthy 2 7 30 https://www.humanconnectome.org 

Gao et al. (2019 ) 1 HCP 515 (274F) Healthy 1 7 30 https://www.humanconnectome.org 

2 PNC 571 (320F) Healthy 1 2 6 https://www.nitrc.org/projects/pnc 

Greene et al. (2018 ) 1 HCP 515 (274F) Healthy 1 7 30 https://www.humanconnectome.org 

2 PNC 571 (320F) Healthy 1 2 6 https://www.nitrc.org/projects/pnc 

Jiang et al. (2020 ) 1 HCP 463 (269F) Healthy 1 7 15 https://www.humanconnectome.org 

Salehi et al. (2020 ) 1 - 1 (0F) Healthy 33 6 14 - 

2 MSC 10 (5F) Healthy 10 3 30 https://openneuro.org/datasets/ds000224/versions/00001 . 

3 HCP 514 (NA) Healthy 2 7 30 https://www.humanconnectome.org 

Seitzman et al. (2019 ) 1 MSC 10 (5F) Healthy 10 2 30 https://openneuro.org/datasets/ds000224/versions/00001 . 

2 MyConnectome 1 (0F) Healthy 84 - 10 http://myconnectome.org/wp/ 

3 HCP 384 (174F) Healthy 2 - 30 https://www.humanconnectome.org 

4 WashU 120 120 (60F) Healthy 1 - 14 https://legacy.openfmri.org/dataset/ds000243/ 

Shah et al. (2016 ) 1 HCP 476 (280F) Healthy 2 7 30 https://www.humanconnectome.org 

Tavor et al. (2016 ) 1 HCP 98 (NA) Healthy 2 7 30 https://www.humanconnectome.org 

Wu et al. (2020 ) 1 HCP 922 (NA) Healthy 1 7 - https://www.humanconnectome.org 

Kraus et al. (2021 ) 1 MSC DS1: 10 (5F) Healthy 10 3 30 https://openneuro.org/datasets/ds000224/versions/00001 . 

Marek et al. (2018 ) 1 MSC 10 (5F) Healthy 10 3 30 https://openneuro.org/datasets/ds000224/versions/00001 . 

Pinho et al. (2018 ) 1 IBC 12 (2F) Healthy 9-30 12 - https://openneuro.org/datasets/ds002685/versions/1.3.1 

Pinho et al. (2021 ) 1 IBC 13 (2F) Healthy 9-30 12 - https://openneuro.org/datasets/ds002685/versions/1.3.1 

Rosenberg et al. (2016 ) 1 - 25 (13F) Healthy 1 1 12 - 

2 ADHD-200 113 (35F) Healthy, ADHD 1 1 24 http://preprocessed-connectomes-project.org/adhd200/ 

Geerligs et al. (2015 ) 1 Cam-CAN 632 (320F) Healthy 1 2 8.5 https://www.cam-can.org/index.php?content = dataset 

Anderson et al. (2011 ) 1 - 1 (0F) Healthy 1-10 1 50 - 

2 - 36 (20F) Healthy (inc. 

adolescents) 

1 - 8 - 

Braga et al. (2020) 1 - 7 (5F) Healthy 4-24 1-2 14-21 - 

DiNicola et al. (2020 ) 1 - 6 (4F) Healthy 4 1-2 112 - 

2 - 6 (4F) Healthy 4 1-2 112 - 

Epstein and Kanwisher (1998 ) 1 - 9 (NA) Healthy 1 1 - - 

2 - 6 (NA) Healthy 1 1 - - 

Fedorenko et al. (2010 ) 1 - 37 (26F) Unreported 1 2 - - 

Fong et al. (2019 ) 1 - 25 (17F) Healthy 1 3 12 - 

2 - 44 (NA) Healthy 1 1 12 - 

3 - 116 (74F) Healthy (experimental 

and control groups) 

1 1 10 - 

Kanwisher et al. (1997 ) 1 - 15 (9F) Healthy 1-2 3 - - 

Osher et al. (2019 ) 1 - 9 (3F) Healthy 1-2 1 12-18 - 

Parker Jones et al. (2017 ) 1 - 103 (53F) Healthy, Pre-surgical 

patients 

1 1 5 - 

Rosenberg et al. (2018 ) 1 - 44 (29F) Healthy 1 1 12 - 

Spiridon et al. (2006 ) 1 - 14 (7F) Healthy 1 1 - - 

Tobyne et al. (2018 ) 1 - 9 (5F) Healthy 1 1 6-11 - 

2 - 14 (6F) Healthy 1 1 12-18 - 

Vanderwal et al. (2017 ) 1 - 31 (17F) Healthy 1 2 7 - 

Note. Table is separated into two categories: (1) studies reporting resting-state fMRI findings and (2) studies reporting task-based fMRI findings. Citations are organized by dataset, in descending order by 

number of mentions in the review. Citations using the same dataset are organized in alphabetical order. DS = data set, F = females, NA = not available), HCP = Human Connectome Project, ABIDE = Autism 

Brain Imaging Data Exchange, MSC = Midnight Scan Club, GSP = Brain Genomics Superstruct Project, HNU = Hangzhou Normal University test–retest dataset, eNKI-TRT = Enhanced NKI-Rockland Sample 

test–retest dataset, QTIM = Queensland Twin Imaging, WashU 120 = 120 participants from Washington University, ABCD = Adolescent Brain Cognitive Development Study, SLIM = Southwest University 

Longitudinal Imaging Multimodal Dataset, CoRR = Consortium for Reliability and Reproducibility, FCON 1000 = 1000 Functional Connectomes Project, KKI = Kennedy Krieger Institute, NKI = Nathan 

Kline Institute, NSD = Natural Scenes Dataset, SIMON = Single Individual volunteering for Multiple Observations across Networks, PNC = Philadelphia Neurodevelopment Cohort, IBC = Individual Brain 

Charting, Cam-CAN = Cambridge Centre for Aging and Neuroscience 
† Multi-site study, where scan time may vary based on site. 

5
 

https://www.humanconnectome.org
https://www.humanconnectome.org
https://www.humanconnectome.org
https://www.nitrc.org/projects/pnc
https://www.humanconnectome.org
https://www.nitrc.org/projects/pnc
https://www.humanconnectome.org
https://openneuro.org/datasets/ds000224/versions/00001
https://www.humanconnectome.org
https://openneuro.org/datasets/ds000224/versions/00001
http://myconnectome.org/wp/
https://www.humanconnectome.org
https://legacy.openfmri.org/dataset/ds000243/
https://www.humanconnectome.org
https://www.humanconnectome.org
https://www.humanconnectome.org
https://openneuro.org/datasets/ds000224/versions/00001
https://openneuro.org/datasets/ds000224/versions/00001
https://openneuro.org/datasets/ds002685/versions/1.3.1
https://openneuro.org/datasets/ds002685/versions/1.3.1
http://preprocessed-connectomes-project.org/adhd200/
https://www.cam-can.org/index.php?content=dataset
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n both adults and children over a two-year time period, a finding that

as since been corroborated by other groups ( Jalbrzikowski et al., 2020 ;

arek et al., 2019 ; Ousdal et al., 2020 ). Horien et al. (2019) then used

our longitudinal datasets to demonstrate that the same frontoparietal

nd association networks that have previously been shown to be most

redictive of individual subjects also best distinguish individual connec-

ivity patterns years later. 

Moreover, evidence suggests that individual connec-

omes may be partially determined by genetics. Miranda-

ominguez et al. (2018) found that fingerprinting analyses distin-

uished siblings from unrelated individuals. Demeter et al. (2020) fur-

her showed that functional connectome fingerprints can be used

o identify pairs of identical twins and that identification accuracy

ecreases as genetic similarity decreases. 

In addition to individual connectomes being stable and reliable, they

re also associated with multiple aspects of behavior, including fluid in-

elligence ( Finn et al., 2015 ), personality ( Kashyap et al., 2019 ; Liu et al.,

019 ), lifestyle ( Smith et al., 2015 ), cognitive flexibility, and processing

peed ( Wang et al., 2021 ). They may also be a useful tool for understand-

ng brain pathology. For example, Dosenbach et al. (2010) used RSFC

o predict “brain age, ” a level of brain maturity based on functional or-

anization. Additionally, Ousdal et al. (2020) found an association be-

ween increased connectome stability over 2-3 years and reduced mem-

ry performance among middle-aged and older adults. They speculated

hat increased stability reflects the brain’s decreased ability to adapt to

ge-related changes, which may affect overall cognitive function and re-

ult in memory deficits. Additionally, individual functional connectomes

redict social and behavioral symptom scores in children with autism

pectrum disorder and attention deficit/hyperactivity disorder, suggest-

ng that functional connectivity may be used to inform future research

n these disorders ( Lake et al., 2019 ). Brennan et al. (2019) also demon-

trated that RSFC-based biomarkers could be used to predict treatment-

ased improvement as well as the severity of various obsessive-

ompulsive behaviors, such as checking and washing. Furthermore,

erson-specific studies of psychosis have used RSFC to predict symp-

om severity and identify biomarkers better than traditional approaches

 Fan et al., 2021 ; Wang et al., 2020 ). These studies all found that ab-

ormalities in between-network functional connectivity were important

n predicting symptom scores, suggesting that these disorders might be

elated to dysfunctional interactions between higher-order networks. In

hort, person-specific imaging has uncovered details about psychiatric

isorders as well as the relationship between functional connectomes

nd behavior that had previously been undetected in group-level re-

earch. 

.2. Precision neuroimaging and the resting state 

A number of recent person-specific studies have adopted a “pre-

ision ” neuroimaging approach, collecting a substantial amount of

ata from each participant (at least two hours, and often much

ore) ( Allen et al., 2022 ; Gordon et al., 2017c ; Gratton et al., 2020 ;

ratton et al., 2018 ; Laumann et al., 2015 ). Many traditional fMRI stud-

es collect relatively little data (sometimes only 5-10 minutes) from

ach subject and then conduct a group analysis. However, with such

mall quantities of data, the test-retest reliability of fMRI measures is

ow and confounded by variables such as head motion ( Anderson et al.,

011 ; Gordon et al., 2017c ; Laumann et al., 2015 ; Laumann et al., 2017 ;

ynch et al., 2020 ; Noble et al., 2021 ). Precision neuroimaging stud-

es address these concerns by collecting high-quality individual mea-

urements through repeated sampling, giving rise to alternative terms

ike “dense sampling ” or “deep sampling. ” Some of the earliest of these

tudies provided the foundation for person-specific neuroimaging by

ollecting fMRI data from a small number of people over many ses-

ions ( Choe et al., 2015 ; Filevich et al., 2017 ; Gordon et al., 2017c ;

aumann et al., 2015 ; Noble et al., 2017 ; Poldrack et al., 2015 ). For ex-

mple, Poldrack et al. (2015) collected one of the largest single-human
6 
atasets to date, with eighty-four resting-state scans (totaling about 14

ours) over the course of 532 days. Laumann et al. (2015) then com-

ared these data with group data and found that the functional organi-

ation of the individual’s brain included distinct features not seen in the

roup. The authors suggested that smaller amounts of data may not ac-

urately capture these person-specific features. Gordon et al. (2017a) ex-

mined three resting-state datasets and determined that many individ-

als exhibit person-specific features and that these features are reliable

ven though they are unique. Furthermore, after scanning ten individu-

ls repeatedly at midnight (the Midnight Scan Club dataset; MSC) over

lmost two months and obtaining 15 hours of data from each partici-

ant, Gordon et al. (2017c) determined that several of their participants

isplayed person-specific features that were not present in the group av-

rage, supporting the idea that meaningful information is obscured by

roup averaging (see Gordon and Nelson (2021) for a review). 

Expanding upon these findings, other work has provided

urther evidence for the stability of connectomes over time.

adhwar et al. (2020) scanned a single individual over 2.5 years,

cross multiple sites and scanners. While comparing across sites and/or

canners significantly decreased fingerprinting accuracy, the partici-

ant’s connectome was stable across scans conducted at the same site

nd scanner. 

Precision imaging is becoming increasingly popular, not only to fur-

her study intraindividual variability across time (e.g., Duchesne et al.,

019 , who have scanned a single individual for over 15 years) but also

o expand upon the study of person-specific features. Such studies have

ound that functionally-defined regions can vary in size in predictable

ays and that person-specific features that are not present in group

verages can nevertheless be consistent across a subset of participants

 Gordon et al., 2017 a). For example, Braga and Buckner’s (2017) analy-

is of individual brain networks revealed that the default network may

nstead be two distinct networks, but the fine spatial scale needed to

bserve this distinction cannot be achieved with group-level analyses.

hey also found similar results in other traditional functional networks,

uggesting that group-level analyses do not capture essential informa-

ion about individual brain organization. Gordon et al. (2020) then

uilt upon these results and found that the default mode network

as fractionated into nine subnetworks with different functions, fur-

her demonstrating that precision imaging approaches provide a finer-

rained examination of brain organization than is possible in traditional

pproaches. 

Precision neuroimaging can also be readily applied to the study

f psychopathology. Poldrack et al.’s (2015) characterization of a

ingle human brain demonstrated how changes in activity can be

easured over time and are connected to physiological measures,

hich could potentially reveal details related to illness. More recently,

ratton et al. (2020) pointed out that one reason treatments for psychi-

tric disorders are often inadequate ( Kilbourne et al., 2018 ; Wang et al.,

002 ) could be the high variability in patient symptomatology within

isorders. They argued that precision neuroimaging might be one way

o characterize individual differences within disorders in order to tai-

or treatments to individual patients more effectively. Consistent with

his idea, evidence suggests that the quantity of data that is typically

ollected in neuroimaging studies is not sufficient to accurately charac-

erize psychopathology at the individual level ( Liu et al., 2020 ). Partly in

esponse to this concern, Sylvester et al. (2020) used the MSC dataset to

xamine connectivity between the amygdala and resting-state networks.

hey identified three separate subdivisions within the amygdala that

xhibit differential patterns of connectivity and argued that precision

atasets will enable researchers to better understand the neural mecha-

isms underlying mental illnesses. Similarly, Greene et al. (2020) used a

recision neuroimaging approach to characterize connectivity with the

halamus and basal ganglia, finding that some subcortical areas serve

s “integration zones ” for larger networks. Some zones were shared

cross all participants, while others were person-specific. The authors

uggest that these individual differences in brain organization may ex-
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lain variation in clinical outcomes and serve as potential treatment tar-

ets. Consistent with this idea, Gordon et al. (2018) applied precision

MRI to the study of veterans with post-traumatic stress disorder (PTSD).

hey found that having had a traumatic brain injury decreased RSFC,

nd that decreased RSFC was associated with increased PTSD symptom

everity —an effect that the authors demonstrated would not be appar-

nt without large amounts of data. 

Newbold et al. (2020) casted the right arms of three participants for

wo weeks and scanned them every day for six to nine weeks. RSFC

ignificantly decreased between the left primary motor cortex and other

omatomotor areas during the cast period, while spontaneous pulses be-

an occurring throughout circuits associated with the disused arm. Yet

fter cast removal, RSFC quickly returned to pre-cast levels, and the

ulses began to disappear. These findings suggest that when faced with

ufficient change, the brain’s functional organization can be altered by

ehavior, which could change the way we understand brain plasticity in

he context of disease ( Newbold and Dosenbach, 2021 ; Newbold et al.,

020 ). These insights would not have been possible without the fine-

rained detail afforded by precision approaches. 

. Task-based activity may improve person-specific 

haracterization 

.1. Task-based activity and individual differences 

The person-specific studies already discussed focused on resting-state

MRI rather than task-based activity. One of the motivations for using

he resting state is that functional organization is similar across differ-

nt brain states ( Cole et al., 2016 ; Mars et al., 2018 ; Salvo et al., 2021 ;

hah et al., 2016 ; Tavor et al., 2016 ) and therefore is able to index who

ou are, rather than what you are doing ( Finn and Constable, 2016 ;

ordon and Nelson, 2021 ; Gratton et al., 2018 ). For example, using

4 different tasks, Cole et al. (2014) found that functional organization

s primarily determined by an “intrinsic ” structure that changes little

etween rest or across tasks. Though the authors did find that func-

ional connectivity changes across tasks, these changes were small, and

ole et al. (2019) suggest that such changes may be due to confounding

actors, such as task timing or head motion. 

RSFC can also be used to predict patterns of task activity. For ex-

mple, Tobyne et al. (2018) used connectome fingerprinting to predict

ctivations in lateral frontal cortex related to visual and auditory work-

ng memory and attention, and Osher et al. (2019) further predicted

orsal attention network activation from RSFC. It is therefore natural

o ask whether RSFC is all one needs to capture individual differences

n neural organization, especially given that RSFC is relatively simple to

btain ( Dubois and Adolphs, 2016 ; Finn et al., 2017 ; Parker Jones et al.,

017 ; Tobyne et al., 2018 ). 

Nevertheless, there are reasons to suspect that resting state connec-

ivity alone may not be sufficient for characterizing some aspects of in-

ividual variability. First, rest is an unconstrained state, and so differ-

nces in what people do during that unconstrained time could introduce

oise and obscure reliable person-specific patterns of activity. Partic-

pants’ minds may wander as they become bored, or they may move

round or even fall asleep. These issues are even more pronounced in

linical populations, older adults, and children ( Anderson et al., 2011 ;

ickhoff et al., 2020 ; Greene et al., 2018 ). To mitigate these problems,

ome studies have sought to compare activation during rest with ac-

ivation during naturalistic viewing conditions (e.g., watching movie

lips) in hopes of constraining brain state across participants. In one

uch study, Vanderwal et al. (2017) found that the inclusion of movies

mproved fingerprinting accuracy over rest alone. 

A second concern is that resting state connectivity alone may miss

mportant aspects of neural organization ( Geerligs et al., 2015 ). For ex-

mple, by scanning the same subjects while they viewed a variety of

ifferent visual stimuli, Kanwisher and colleagues were able to identify

egions in ventral visual cortex that were associated with specific func-
7 
ions (e.g., the fusiform face area [FFA], the parahippocampal place area

PPA]) ( Epstein and Kanwisher, 1998 ; Fedorenko and Kanwisher, 2009 ;

anwisher et al., 1997 ; Spiridon et al., 2006 ). This work led to the

se of task-based functional localizers, which are now routinely used

o identify functional regions that vary in location from person to per-

on ( Fedorenko, 2021 ; Fedorenko et al., 2010 ; Nieto-Castanon and Fe-

orenko, 2012 ). While resting-state data can often predict task-based

ctivations (e.g., Tavor et al., 2016 ; also see Section 4.2 ), resting state

ata alone would not have been able to determine that the FFA is in-

olved in face processing or that the PPA is involved in place processing.

Using tasks to change brain state might also provide further in-

ights into the brain’s functional organization, even when examining

esting-state connectivity. Finn and Constable (2017) use the analogy

f a cardiac stress test, which aims to bring out differences that may

e abnormal, but too slight to observe at rest. Similarly, using cogni-

ive tasks to expose a process of interest may magnify individual dif-

erences that are unseen during rest. For example, by manipulating

rain state, Greene et al. (2018) were better able to predict individ-

al traits from functional connectivity measurements, suggesting that

he tasks induced changes in connectivity that magnified relevant indi-

idual differences. Moreover, models that include task states also pre-

ict a variety of behavioral measures more accurately than those that

nly include resting state data ( Jiang et al., 2020 ), including measures

f working memory ( Avery et al., 2020 ) and attention ( Fong et al.,

019 ; Rosenberg et al., 2016 ; Rosenberg et al., 2018 ). Including multi-

le task states has been found to further improve behavioral predictions

 Gao et al., 2019 ; Greene et al., 2018 ; Wu et al., 2020 ), but incorpo-

ating them into a single connectome could potentially blur important

ifferences between states. Gao et al. (2019) therefore proposed creat-

ng separate connectomes for each task state and then combining them

nto a multidimensional connectome, which further improved predic-

ion accuracy. 

.2. Task-based activity in precision techniques 

A number of studies have also incorporated task-based activity in a

recision neuroimaging framework and collected extensive amounts of

ata. In some cases, adding task data did not affect the results signifi-

antly. For example, Gratton et al. (2018) found that functional organi-

ation is primarily determined by individual, trait-like qualities, rather

han those due to task state. Additionally, Braga et al. (2020) repeatedly

canned a small set of individuals in order to characterize the language

etwork in each person and found that their connectivity-defined lan-

uage network changed little based on what state was used to create it.

n the other hand, they also found that this network is one of several

istinct association networks that have specialized functions, and they

lso identified some functional regions that had not been found in previ-

us work. Marek et al. (2018) , using the MSC dataset, found consistent

ndividual variation in the functional architecture of the cerebellum that

orresponded to parcellations derived from resting state data, and multi-

le others have found that rs-fMRI can reproduce similar person-specific

egions and networks as those produced by task-based functional local-

zers ( Gordon et al., 2017c ; Laumann et al., 2015 ). 

Other studies have found that including task-based activity in pre-

ision datasets can reveal within-individual differences between brain

tates. Anderson et al. (2011) found that they could discriminate func-

ional connectivity derived from resting-state scans from connectivity

erived from naturalistic viewing scans with exceptional accuracy when

ncluding more than 10 minutes of data. Their results suggest that func-

ional connectivity during a task is somewhat different than during rest,

nd that state-related differences may only be discernible with pre-

ision approaches because of the increase in reliability they provide.

raus et al. (2021) followed up this idea with an examination of trait-

ike variants that had previously only been found using resting-state

ata ( Gordon et al., 2017c ; Gratton et al., 2018 ; Seitzman et al., 2019 ).

hey found that though variants are more similar within individuals
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cross states than across individuals, they also demonstrated some de-

endence on brain state. Furthermore, task-based precision neuroimag-

ng has revealed that specific default mode subnetworks are activated

y different tasks ( DiNicola et al., 2020 ; Gordon et al., 2020 ). Impor-

antly, Salehi et al. (2020) found that the brain reconfigures the same

ay when completing the same task, indicating that the resting state

lone does not provide a complete picture of the brain’s functional ar-

hitecture. In fact, the authors claimed that there is “no single atlas, ” and

hat subject-specific, state-specific atlases will be important in gaining

 more complete understanding of the brain and its functions. 

The Individual Brain Charting Project ( Pinho et al., 2021 ;

inho et al., 2018 ; Thirion et al., 2021 ) has demonstrated that increas-

ng the number of cognitive tasks improves characterization of specific

rain areas and their functions. Similarly, the Natural Scenes Dataset

canned individuals as they viewed thousands of different scene images

 Allen et al., 2022 ). Such approaches are based on the idea that study-

ng the functional architecture of a few individual brains in detail will

rovide new insight into neural organization more generally. Doing so

ill require studying individual brains in as many contexts as possible

 Naselaris et al., 2021 ; Thirion et al., 2021 ). 

. Limitations and future directions 

While person-specific imaging has provided important insights re-

arding individual differences in the brain, the field is still in its infancy.

ere, we outline a few current limitations as well as potential directions

or future research. 

.1. Using large task batteries to densely image cognition 

The bulk of the research on individual variability has used resting

tate data, but recent evidence indicates that adding task states may

e helpful. For example, Finn et al. (2017) suggested that because the

esting state is noisier, task states may require less scanning time than

est to produce reliable within-subject measurements. However, very

ew studies have directly tested this hypothesis, and multi-echo fMRI

ay provide another solution (see Section 5.5 ). Furthermore, one task

ay not be optimal; the inclusion of more than one task state can be

sed to improve behavioral predictions ( Gao et al., 2019 ; Greene et al.,

018 ; Wu et al., 2020 ), as any individual task may miss important as-

ects of functional architecture that could be observed using other tasks

 Finn et al., 2017 ; Geerligs et al., 2015 ; Jiang et al., 2020 ; Pinho et al.,

021 ). Given a finite amount of time, one encounters a tradeoff between

ollecting more tasks versus collecting multiple runs of a single task.

owever, measuring brain activity from the same participants in as wide

 variety of contexts as possible will provide a more complete picture

f the neural organization of cognition. For example, studying the brain

n different contexts has led to discoveries of many specialized brain

egions, such as the fusiform face area, parahippocampal place area,

nd language areas ( Epstein and Kanwisher, 1998 ; Fedorenko et al.,

012 ; Fedorenko et al., 2010 ; Kanwisher et al., 1997 ). Precision imag-

ng presents a unique opportunity to study brain function at a finer scale

hrough the incorporation of task states. The Individual Brain Charting

IBC) project ( Pinho et al., 2020 ; Pinho et al., 2018 ), is one such attempt

o map a wide domain of perceptual and cognitive functions by collect-

ng data from twelve individuals as they complete approximately 30

asks, while the Natural Scenes Dataset collected data from individuals

s they viewed thousands of images ( Allen et al., 2022 ). Approaches like

hese may be instrumental in furthering our understanding of functional

rain architecture at an individual level. 

.2. Limitations of assuming shared topology 

We have reviewed many studies that used person-specific imaging

ethods, but many of them still used a group-derived parcellation to
8 
ap the brain and model its function ( Eickhoff et al., 2018 ). In particu-

ar, many functional connectivity studies adopt a single, shared parcel-

ation across participants For example, Finn et al. (2015) used a group-

ise clustering algorithm on 45 participants to create a parcellation and

hen applied it to all subjects in their analyses. This method implicitly as-

umes that the parcels neither vary across individuals nor change within

ndividuals based on tasks, which may be unrealistic ( Salehi et al.,

020 ). In fact, the precision imaging literature reviewed previously has

xtensively demonstrated that group-based parcellations do not accu-

ately represent the functional organization of every person in the group

 Braga and Buckner, 2017 ; Gordon et al., 2020 ; Laumann et al., 2015 ;

oldrack et al., 2015 ). Future research could use function-based parcel-

ation approaches, as suggested by Salehi et al. (2020) , or create new

arcellations that account for individual differences in neural architec-

ure. 

One promising alternative to traditional normalization is hyperalign-

ent ( Busch et al., 2021 ; Feilong et al., 2018 ; Guntupalli et al., 2016 ;

axby et al., 2011 ). Here, patterns of activation in each participant are

ransformed into a common representational space such that voxels from

ifferent participants that share functional properties are mapped into

earby parts of a high-dimensional space. This approach makes it possi-

le to analyze groups of participants in a common space while address-

ng the inherent variability in the spatial location of functional regions

cross participants. 

.3. Generalizability in person-specific imaging 

One potential concern with person-specific and precision neuroimag-

ng is generalizability. The studies discussed above have repeatedly

ound that individual brains are heterogeneous, so how can these results

e generalized to individuals not in the study? Importantly, many of

hese studies have discovered features of the brain’s neural architecture

hat are shared across many, if not all brains. For example, Braga and

uckner (2017) and Gordon et al. (2020) found that the default net-

ork may consist of multiple networks that were invisible with tradi-

ional approaches, but that nevertheless exist in almost every brain. Pre-

ision neuroimaging offers the ability to view the brain with a clarity

hat was not previously possible and will likely continue to reveal de-

ails about neural organization that have yet to be discovered. However,

oth the person-specific and precision imaging research reviewed here

rimarily use a small pool of datasets, such as the Human Connectome

roject (HCP; Van Essen et al., 2013 ) or the Midnight Scan Club dataset

 Gordon et al., 2017c ) ( Table 1 ). The subjects in such datasets are typi-

ally healthy, educated young adults and, in the case of precision imag-

ng datasets, include individuals who co-authored the studies. Because

ither collecting data from many subjects or collecting large amounts

f data from individuals is difficult and costly ( Gratton et al., 2018 ;

ynch et al., 2021 ; Tobyne et al., 2018 ), these datasets are valuable re-

ources. But the repeated use of such a small number of datasets may

ventually lead to overfitting, where the models we create inevitably

nclude the idiosyncrasies of those datasets ( Grootswagers and Robin-

on, 2021 ). This issue poses a significant challenge for neuroimaging re-

earch, which already suffers from a replication crisis. The fact that these

atasets are difficult to obtain is even more reason that they should be

hared, and an increase in the number of person-specific and precision

maging datasets will allow for both the replication of previous work

nd the testing of new hypotheses. We hope that bringing attention to

his limitation will prevent the problems associated with the overuse of

 small pool of data, particularly as it pertains to the study of person-

pecific brain organization. 

.4. The reliability paradox 

One of the key advantages of precision imaging studies is that collect-

ng a lot of data in each participant increases within-subject reliability.

hese higher-quality measurements allow researchers to be confident
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hat the person-specific features observed in a given individual are real

nd are not due to noise. That said, although within-subject reliability

s necessary, it is not sufficient if our ultimate goal is to relate individual

ifferences in brain organization to individual differences in behavior.

o achieve that goal, the individual differences between subjects must

lso be reliable. 

In most neuroimaging research, a reliable task produces the

ame effect across subjects and therefore has low between-subject

ariability. However, if the goal is to relate individual differences

n neural measures to individual differences in behavioral mea-

ures, then low between-subject variability is actually a problem. As

edge et al. (2018) argue, low between-subject variability means low

eliability of individual differences, undermining the ability to identify

eliable correlations between individual difference measures. This “re-

iability paradox ” will become increasingly relevant to study designs as

esearchers attempt to examine brain-behavior relationships, as estab-

ishing both within- and between-subject reliability will be important in

rder to produce more replicable results and further inform new theories

f cognitive processing ( Hedge et al., 2018 ). 

.5. Incorporating brain stimulation techniques into person-specific imaging

Transcranial magnetic stimulation (TMS), a form of non-invasive

rain stimulation, is well-suited to the study of individual differences

ecause it makes it possible to experimentally manipulate activity in

erson-specific functional regions. Most neuroimaging research is in-

erently correlational, and so the addition of TMS to person-specific

maging studies would allow for the causal manipulation of brain activ-

ty in person-specific functional regions. Fortunately, brain stimulation

s also moving towards person-specific methods. Stimulation sites were

reviously often chosen based on anatomical locations or International

0/20 electrode scalp positions, but because the functional organization

f the brain differs across individuals, these standardized targets pro-

uce different effects in different people ( Lynch et al., 2019 ; Sack et al.,

009 ). Instead, using functional connectivity to locate stimulation sites

hat are highly connected to an area of interest have been shown to

e replicable and have promise in improving TMS-based treatments for

 range of disorders. For example, TMS stimulation at person-specific

ites highly connected to the hippocampus have been shown to improve

emory performance, and frontal stimulation sites based on fMRI task

ata have been used to elucidate the organization of regions involved

n perceptual decision making and cognitive control ( Freedberg et al.,

019 ; Nee and D’Esposito, 2017 ; Rahnev et al., 2016 ; Wang et al., 2014 ).

zdemir et al. (2020) used TMS to stimulate specific brain networks and

hen measured the propagation of activity to other regions. They found

hat the propagation patterns were unique to individuals and predicted

ndividual differences in behavioral performance that were missed by

raditional resting-state measures. 

These person-specific approaches have further demonstrated

romise in providing more effective treatments for disorders such as

lzheimer’s disease and depression ( Bagattini et al., 2021 ; Fox et al.,

012 ; Fox et al., 2012 ; Fox et al., 2013 ; Siddiqi et al., 2019 ). In fact,

iddiqi et al. (2019) demonstrated that people with different patterns of

epressive symptoms responded better to different person-specific stim-

lation sites, suggesting that person-specific stimulation has the poten-

ial to improve the treatment of many different psychiatric disorders. 

However, while several studies have mentioned the utility of this

ork in precision psychiatry ( Braga and Buckner, 2017 ; Gratton et al.,

020 ; Greene et al., 2020 ), to our knowledge only a few studies

ave used TMS in conjunction with highly-sampled, precision datasets.

ynch et al. (2019) used the MSC dataset to determine that connector

ubs, or areas connected to multiple networks, are individual-specific

nd can be mapped with large amounts of data. They then applied TMS

o person-specific hub and non-hub stimulation sites in an independent

ataset, finding that continuous theta burst stimulation to a hub tar-

et impaired working memory performance compared to stimulation
9 
f a non-hub target. Their results demonstrate that combining precision

euroimaging with TMS can provide unique opportunities to further our

nderstanding of brain-behavior relationships. 

.6. New analytical techniques 

A substantial amount of work has been done using connectome fin-

erprinting to identify individuals and predict patterns of activation and

ndividual traits. This work could shed light on differences in cognition

cross healthy and clinical populations and identify those at risk of de-

eloping future disorders. Much of the current literature on predicting

ndividual differences has used an approach called connectome-based

redictive modeling (CPM), which derives models that predict brain-

ehavior relationships using cross-validation ( Finn et al., 2015 ). How-

ver, other connectome fingerprinting techniques have also been suc-

essfully used to identify individuals by their structural ( Osher et al.,

016 ; Saygin et al., 2012 ) and functional connectivity ( Cai et al.,

019 ; Chen and Hu, 2018 ; Osher et al., 2019 ; Tobyne et al., 2018 ;

enkatesh et al., 2020 ). New methods have also become available,

ike the recent multidimensional CPM method, which combines con-

ectomes from multiple different states, rather than using one state to

redict others ( Gao et al., 2019 ). Few studies directly compare these dif-

erent methods, but those that do have found differences in their results

 Gao et al., 2019 ; Yoo et al., 2019 ). For example, Finn et al. (2015) found

hat fingerprinting accuracy was worst when using less than 6 minutes

f data, but Chen et al. (2018) reported that 72 seconds was sufficient

or individual identification when using recurrent neural networks. A

reater understanding of how these methods differ in their ability to

dentify individuals and predict behavior will be important to inform-

ng future research, as it could potentially limit inconsistencies due to

researcher degrees of freedom ” ( Poldrack et al., 2017 ). 

In addition, one of the challenges associated with precision imag-

ng methods is the need for large amounts of data. However, re-

ent work has demonstrated the promise of multi-echo fMRI in short-

ning the scan time needed to produce reliable single-subject mea-

urements. Lynch et al. (2020) found that 10 minutes of “opti-

ally combined ” multi-echo timeseries (OC-ME) data combined with

undu et al.’s (2012) ME-ICA denoising technique provided more re-

iable estimates of single-subject functional connectivity than 30 min-

tes of traditional single-echo data. These methods may make precision

maging considerably more feasible in the study of psychiatric and neu-

ological disorders ( Lynch et al., 2021 ; Lynch et al., 2020 ). In a later

eview, these same authors argued that single-echo data should not be

verlooked, because some cortical areas do demonstrate good reliability

ith only 15-30 minutes of data ( Lynch et al., 2021 ). 

. Conclusion 

Person-specific and precision neuroimaging will allow researchers

o obtain a more precise understanding of the brain’s functional archi-

ecture than ever before. Though this field is still in its early stages,

tudies have made substantial progress in recent years. This research

uggests solutions to the well-known problems associated with group

nalyses and could lead to new insights into the functional organization

f the human brain. They also provide meaningful evidence that “preci-

ion ” imaging approaches can uncover fine-grained details of the brain

hat can only be seen when collecting substantial amounts of data from

ach individual. These person-specific approaches demonstrate substan-

ial promise in uncovering the functional organization of the brain and

ts relationship to behavior. 

ata and code availability 

This review article does not include the use of original data and/or

ode. For information regarding the data and code from studies cited

ithin, please see the original article. 
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